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The effect of gravity modulation on long-wavelength disturbances at the free surface
of a surfactant-covered thin liquid layer is analysed. The surfactants are assumed
to be insoluble so that variations in their concentration along the free surface
produce Marangoni flows in the underlying liquid. Lubrication theory is applied to
obtain nonlinear partial differential equations that describe the behaviour of the free
surface height and surfactant concentration, and the stability of these equations to
small-amplitude disturbances is examined by applying Floquet theory. It is found that
long-wavelength disturbances are destabilized by gravity modulation when surfactants
are present, whereas such disturbances are stable when surfactants are absent. Results
from additional calculations indicate that the instability becomes more difficult to
excite as the Marangoni forces, body forces, capillary forces and surfactant diffusivity
increase, and becomes easier to excite as the van der Waals forces increase.

1. Introduction
The adsorption of contaminants at the free surface of a liquid generally leads to a

reduction in surface tension (Edwards, Brenner & Wasan 1991). If the concentration
of the contaminants varies along the surface, surface tension variations will result
and drive a flow in the underlying liquid. Known as Marangoni flows, these surface-
tension-driven motions may be undesirable for applications such as coating (Scriven
& Sternling 1964) and crystal growth (Carpenter & Homsy 1985). In microgravity
environments, free surfaces in fluid systems are also subject to time-dependent gravi-
tational forces. In the form of vertical vibration, such forces are capable of exciting
standing waves at free surfaces, a topic well-studied since the seminal work of Faraday
(1831). An issue of fundamental interest which arises from the above observations is
the effect that gravity modulation has on disturbances at a contaminated free surface.
Our goal is to address this issue for a class of flows where lubrication theory applies
and the contaminants can be modelled as surfactants that are localized at the free
surface.

Wave formation on vertically vibrated liquid layers has been analysed for inviscid
(Benjamin & Ursell 1954; Miles & Henderson 1990), Newtonian (Kumar 1996; Perlin
& Schultz 2000), and non-Newtonian liquids (Kumar 1999). In all cases, the vibration
is assumed to be in the form of a sinusoidal modulation about a mean gravity. For
viscous liquids, standing waves develop above a critical vibration amplitude that is a
function of the vibration frequency. The standing waves correspond to time-periodic
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solutions of the linearized governing equations obtained through Floquet theory. A
finite amplitude is required to excite the waves because the viscous dissipation of the
liquid must be overcome. (As inviscid liquids lack a damping mechanism, a unique
critical wavenumber is not predicted by theory for these liquids.) Measurements of
the critical amplitude and wavenumber for both Newtonian (Bechhoefer et al. 1995)
and non-Newtonian liquids (Raynal, Kumar & Fauve 1999; Wagner, Muller & Knorr
1999) are in excellent agreement with theoretical predictions.

The theoretical studies mentioned above are linear stability analyses and assume
that the interface has a uniform surface tension. Recently, a linear stability analysis was
performed by Kumar & Matar (2002) to account for surface tension variations due
to the presence of an insoluble surfactant adsorbed at the interface. The analysis was
valid for fluids of arbitrary viscosity and depth, and the effects of lateral boundaries
were neglected. The main conclusion of Kumar & Matar (2002) is that surfactants can
either raise or lower the critical vibration amplitude needed to excite the instability
depending on the spatial phase shift between the surfactant concentration variations
and surface deflections. If the concentration variations are in phase with the surface
deflections (maximum concentration at wave crests), they will drive a Marangoni
flow that pulls fluid away from the wave crests, and this will produce a larger
critical amplitude. Similarly, if the concentration variations are out of phase with
the surface deflections (minimum concentration at wave crests), they will drive a
Marangoni flow that pulls fluid toward the wave crests, and this will produce a
smaller critical amplitude. The above observations were found to be valid in the limit
of zero surfactant diffusivity. For non-zero diffusivities, it was found that disturbances
in the surface concentration of the surfactant simply decay exponentially on a time
scale which is inversely proportional to the surface diffusivity of the surfactant. As a
consequence, the time-periodic solutions of the linearized governing equations for this
case correspond to standing waves for which the surface tension is spatially uniform,
meaning that Marangoni flows are absent.

In this paper, we take a very different approach to the above problem by performing
a lubrication analysis of the governing equations. We consider the thickness of the
liquid layer to be much smaller than the wavelength of the interfacial disturbance,
thereby allowing a separation of length scales that was not possible in Kumar & Matar
(2002). With this approach, we obtain a coupled system of nonlinear partial differential
equations describing the free surface height and the surfactant concentration as a
function of time and the horizontal spatial coordinate. We find from these equations
that the liquid layer is unstable to long-wavelength disturbances if it is covered by
surfactants, while it is stable to such disturbances if the surfactants are absent. These
results are valid for non-zero surfactant diffusivities, and represent standing wave
solutions in which Marangoni flows are present. They can be contrasted to the results
of Kumar & Matar (2002), who found that non-zero surfactant diffusivities prevented
Marangoni flows from appearing in the standing wave solutions they constructed.
The differences in the conclusions between that paper and the present one are due to
the separation of length scales adopted here, which allows us to take advantage of
certain asymptotic approximations.

2. Problem formulation
2.1. Governing equations

A thin layer of an incompressible Newtonian liquid, uniformly covered by a monolayer
of insoluble surfactant, rests on a horizontal support. The support undergoes vertical
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sinusoidal oscillations of amplitude a and frequency ω. The vertical coordinate is
denoted by z, such that the bottom of the plate is taken to be at z = 0, while
the undisturbed free surface of the liquid is located at z = h. The horizontal and
transverse coordinates are represented by x and y, respectively. The effects of lateral
boundaries are neglected.

The equations of momentum and mass conservation are respectively given by

ρ(∂tu+ u · ∇u) = −∇(p+ φ) + ηs∇2u− ρB(t)ez and ∇ · u = 0, (2.1)

in which ρ is the density, u = (u, v, w) represents the velocity, t denotes time, p is the
pressure, ηs is the liquid viscosity, and ez is the unit vector in the z-direction. The
variable φ = A/ζ3 is a potential energy per unit volume term which represents van
der Waals forces, where A is the so-called Hamaker constant (Edwards et al. 1991)
and ζ denotes the location of the free surface. The function B(t) = g − a cos(ωt) is
the modulated gravity wherein g is the mean gravitational acceleration.

We now present the boundary conditions for these governing equations. The shear
stress balance at the air–liquid interface (Deen 1998), located at z = ζ(x, y, t), is
expressed by

t · π · n = t · ∇sσ, (2.2)

while the normal stress balance is given by

n · π · n = −σκ. (2.3)

Here, σ is the surface tension, κ is the curvature, t and n are the tangent and normal
unit vectors to the interface, and ∇s = (δ − nn) · ∇ is the surface gradient operator.
The tensor π is expressed by

π = −(p+ φ− ρB(t)ζ)δ + ηs(∇u+ (∇u)T ), (2.4)

in which δ is the identity tensor. The dynamics of the air overlying the liquid layer
have been neglected in the stress balances. The kinematic boundary condition at
z = ζ(x, y, t) is given by

(∂t + us · ∇s)ζ = ws, (2.5)

where us and ws denote the velocity vector and its vertical component evaluated at
z = ζ. The equation of mass conservation of surfactant is given by

∂tΓ + ∇s · (usΓ ) + (us · n)(∇s · n)Γ = D∇2
sΓ , (2.6)

where Γ is the surfactant surface concentration and D is the surfactant surface
diffusion coefficient (Stone 1990). In (2.6), the second and third terms on the left-
hand side represent transport by convection and surface dilation, respectively, while
the term on the right-hand side represents diffusive transport. Finally, no-slip and
no-penetration conditions are applied at the support, located at z = 0:

u = w = 0. (2.7)

2.2. Scaling and asymptotic expansions

In order to render these equations dimensionless, the following scaling is chosen:

(u, v) = (ωh)(ũ, ṽ), w = (εωh)w̃, (x, y) = L(x̃, ỹ), (z, ζ) = h(z̃, ζ̃), (2.8)

t = (1/ω)̃t, p = (ηsωL/h)p̃, (2.9)

where the tilde denotes dimensionless quantities. Here, we shall assume that the ratio
of the film depth, h, to the wavelength of the interfacial disturbance, L, is ε = h/L� 1.
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In this limit, k∗h� 1, where k∗ is the dimensional disturbance wavenumber. For the
surfactant concentration, Γ , and surface tension, σ, we choose the following scaling:

Γ = ΓmΓ̃ and σ = σm + σ̃S, (2.10)

where Γm denotes the mean surfactant concentration and σm is the surface tension
corresponding to Γm. The spreading pressure is given by S = σ0 − σm, where σ0

denotes the value of the surface tension for an uncontaminated liquid surface. We
assume that the surfactant concentration is dilute enough to permit use of a linear
equation of state:

σ = σ0 +

(
∂σ

∂Γ

)
Γ= 0

Γ . (2.11)

Substitution of these scalings into the governing equations, boundary conditions
and equation of state, yields a set of dimensionless equations to leading order in ε.
(The tilde notation is henceforth dropped.) For simplicity, we assume that the flow
is two-dimensional. The x-component of the momentum conservation equation now
becomes

Re(ut) = −(p+ φ)x + uzz + O(ε2, εRe), (2.12)

where φ = Ã/ζ3, in which

Ã =
A

ηsωLh2
(2.13)

is a dimensionless Hamaker constant, and Re, the Reynolds number, is expressed by

Re ≡ ωh2

νs
, (2.14)

in which νs is the kinematic viscosity of the liquid. The z-component of the momentum
conservation equation is expressed by

0 = pz + B(t) + O(ε2, ε2Re), (2.15)

in which B(t) = B−A cos(t) represents a modulated gravitational acceleration where

A ≡ ερah

ηsω
(2.16)

is the dimensionless amplitude of sinusoidal acceleration and

B ≡ ερgh

ηsω
(2.17)

provides a measure of the significance of mean gravitational forces. The equation of
continuity remains unaltered after the rescaling.

The shear stress balance becomes

uz =Mσx + O(ε2), (2.18)

in whichM is a Marangoni parameter, which represents a ratio of Marangoni forces
to viscous forces:

M≡ εS
ηsωh

. (2.19)

The normal stress balance is expressed by

p = −CMζxx + O(ε2), (2.20)
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in which the parameter C,

C ≡ ε2σm

S , (2.21)

is an inverse capillary number reflecting the importance of capillarity. Note that the
potential effect of Marangoni stresses on capillarity has been neglected (see Appendix).
The kinematic boundary condition at z = ζ is given by

∂tζ + ε(uζx − w) = 0, (2.22)

and the equation of surfactant mass conservation by

∂tΓ + ε(uΓ )x = εPe−1Γxx, (2.23)

where Pe, which represents the ratio of surfactant transport by Marangoni stresses
to that by surface diffusion, is expressed by

Pe ≡ ωhL

D . (2.24)

Following scaling, the surfactant equation of state simply becomes σ = 1−Γ . Finally,
the no-slip and no-penetration conditions become u = w = 0.

We now demote the inertial terms in the equations of momentum conservation by
setting T = εt, which yields

εRe(uT + uux + wuz) = −(p+ φ)x + uzz + O(ε2). (2.25)

The kinematic boundary condition at z = ζ then becomes

∂T ζ + uζx = w, (2.26)

and the equation of surfactant mass conservation becomes

∂TΓ + (uΓ )x = Pe−1Γxx. (2.27)

We define R ≡ εRe, in which Re ∼ O(1), and expand all variables in powers of R:

u = u0 +Ru1 + · · · , w = w0 +Rw1 + · · · ,
p = p0 +Rp1 + · · · , φ = φ0 +Rφ1 + · · · ,
ζ = ζ0 +Rζ1 + · · · , Γ = Γ0 +RΓ1 + · · · .

 (2.28)

Insertion of this expansion into the dimensionless governing equations yields the
following equations to leading order in R:

0 = −(p0 + φ0)x + u0zz, (2.29)

p0z = −B(t), (2.30)

u0z =Mσ0x on ζ0, (2.31)

p0 = −CMζ0xx on ζ0, (2.32)

ζ0T + u0ζ0x = w0 on ζ0, (2.33)

Γ0T + (u0Γ0)x = Pe−1Γ0xx on ζ0. (2.34)

The leading-order system of equations can be solved to yield the following:

u0 =Mσ0xz + 1
2
z(z − 2ζ0)(p0 + φ0)x, (2.35)

w0 = −M 1
2
z2σ0xx + 1

2
z2ζ0x(p0 + φ0)x − 1

6
(z3 − 3z2ζ0)(p0 + φ0)xx, (2.36)
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in which

p0 = B(T )(ζ0 − z)−CMζ0xx. (2.37)

These can then be used to construct the leading-order evolution equations for ζ0 and
Γ0:

ζ0T =

(
1
2
Mζ2

0Γ0x + 1
3
ζ3

0 [B(t)ζ0x −CMζ0xxx]− Ãζ0x

ζ0

)
x

, (2.38)

Γ0T =

(
Mζ0Γ0Γ0x + Pe−1Γ0x + 1

2
Γ0ζ

2
0 [B(t)ζ0x −CMζ0xxx]− 3

2
Ã
Γ0

ζ2
0

ζ0x

)
x

, (2.39)

where we have used σ0 = 1− Γ0. Note that the separation of length scales (h and L)
adopted in this work has given rise to these nonlinear evolution equations, which is
in contrast to the case of a layer of arbitrary depth (Kumar & Matar 2002) in which
no such separation was possible.

For the case where surfactants are absent, we set Γ0 = 0 in (2.38) and (2.39), which
leaves us with an evolution equation for ζ0:

ζ
(o)
0T =

(
ζ

(o)
0

3

3
[B(o)(T )ζ(o)

0x − C̃(o)ζ
(o)
0xxx]− Ã(o)

ζ
(o)
0x

ζ
(o)
0

)
x

, (2.40)

where the superscript (o) denotes the surfactant-free case; here B(o)(T ) = B(o)

− A(o) cos(T ). The scalings have also been changed: S → σ0, and σm → σ0.
That is, the dimensional surface tension has been scaled with the value of the
surface tension associated with the clean interface, σ0. Hence M and C now become
M→M(o) = εσ0/ηsωh and C → C(o) = ε2. The new dimensionless group appearing
in (2.40), C̃(o), is now expressed by C̃(o) = C(o)M(o) = ε3σ0/ηsωh = ε3/Ca, where
Ca is a capillary number; thus C̃(o) is an inverse capillary number. The remaining
dimensionless groups Ã(o), A(o) and B(o) remain unchanged from (2.13), (2.16) and
(2.17), respectively.

It is, of course, possible to construct evolution equations for higher-order corrections
to ζ and Γ . In the present work, we focus on the stability of the leading-order
equations, which is discussed next.

3. Stability analysis
In this section, we linearize the lubrication equations developed above, (2.38)–(2.40),

and examine their stability to small perturbations. Where surfactants are present, we
linearize (2.38) and (2.39) about ζ0 = 1 and Γ0 = 1 by introducing the expansion

(ζ0, Γ0)(x, t) = 1 + (ζ̂(t), Γ̂ (t))eikx (3.1)

into the lubrication equations, where k is a dimensionless wavenumber. Where sur-
factants are absent, the surface deformation, ζ(o)

0 , is expanded in a similar way. We
begin by considering the latter case.

3.1. Case I: Surfactants absent

The linearized version of (2.40) is

ζ̂
(o)
T = 1

3
k2A(o) cos(T )ζ̂(o) − 1

3
k2(B(o) + C̃(o)k2)ζ̂(o) + Ã(o)k2ζ̂(o). (3.2)

This equation can be integrated from 0 to T to yield

ζ̂(o) = ζ̂(o)(T = 0) exp[ 1
3
k2A(o) sin(T )− 1

3
k2(B(o) + C̃(o)k2)T + Ã(o)k2T ]. (3.3)
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Equation (3.3) indicates that disturbances to the free surface will decay to zero as
T → ∞ provided that Ã(o) < [B(o) + C̃(o)k2]/3. This means that instability will not
occur as long as forces due to van der Waals attraction are sufficiently weak compared
to gravity and capillary forces.

According to (3.3), the vibration amplitude does not affect the long-time behaviour
of the surface disturbances. Thus, in the asymptotic limit considered here (ε� 1,
R � 1), vertical vibration will not lead to the generation of standing waves when sur-
factants are absent. This limit corresponds to long-wavelength disturbances, k∗h� 1.
Disturbances which do not satisfy this requirement may still be excited by vertical
vibration and lead to the formation of standing waves. Indeed, linear analyses of the
Faraday instability indicate that vibration will always destabilize surface waves of a
given critical wavelength.

Finally, we point out that the asymptotic analysis performed here is fundamentally
different in nature to one recently reported in the literature (Cerda & Tirapegui
1998; Cerda, Rojas & Tirapegui 2000). In that analysis, the linearized Navier–Stokes
equations and boundary conditions are used to develop an evolution equation for
the interfacial disturbance. The equation is then solved to obtain a solution which
is non-local in time, and the solution is expanded in terms of an infinite series of
time derivatives. Truncation of the series leads to a Mathieu equation which does
predict that vibration will destabilize surface disturbances. While the authors refer
to their work as a ‘lubrication approximation’, it does not appear to be a traditional
lubrication analysis like the one presented here. An additional difference is that the
lubrication equations developed in the present manuscript could be used to study
the nonlinear behaviour of long-wavelength disturbances and the effects of van der
Waals attraction.

3.2. Case II: Surfactants present

The linearized version of (2.38) and (2.39) is

ζ̂T = 1
3
k2A cos(T )ζ̂ − 1

3
k2(B+ CMk2)ζ̂ − 1

2
k2MΓ̂ + Ãk2ζ̂, (3.4)

Γ̂T = 1
2
k2A cos(T )ζ̂ − 1

2
k2(B+ CMk2)ζ̂ − k2(M+ Pe−1)Γ̂ + 3

2
Ãk2ζ̂. (3.5)

This is a system of first-order ordinary differential equations with time-dependent
coefficients in which the free surface and surface concentration disturbances are
coupled. In the absence of vibration, the coefficients are no longer time dependent
and the stability of the equations can be analysed by applying the Routh–Hurwitz
criterion (Coughanowr 1991). We have performed such an analysis, but simply note
the result since the calculation is straightforward. The key finding is that disturbances
are stable provided that van der Waals forces are sufficiently weak relative to gravity
and capillary forces.

In the presence of vibration, time-periodic solutions are expected based on Floquet
theory. To study these solutions, we follow a procedure similar to that used in
linear analyses of the Faraday instability (Kumar & Tuckerman 1994). We begin by

replacing ζ̂(t) and Γ̂ (t) by

ζ̂(t) = e(s+iα)t

∞∑
n=−∞

ζne
int and Γ̂ (t) = e(s+iα)t

∞∑
n=−∞

Γne
int, (3.6)

where s represents the instability growth rate (real valued) and the value of α indicates
whether the response of the standing waves to the modulation is subharmonic



256 S. Kumar and O. K. Matar

40

30

20

10

0 5 10 15 20 25

(a)

k

!

80

60

40

20

0 4 6 8 10 12

(b)

k

2

Figure 1. Neutral stability curves, A vs. k, for (a)M = 10 and (b)M = 100; the other parameters
are B = 0.16, C = 0.0075, Pe = 6.3 × 105, Ã = 0. The thin solid lines represent a subharmonic
response and the circles represent a harmonic response. The curve for each type of response has a
broad tongue-like shape that actually consists of a series of finer tongue-like curves. The harmonic
curve has its global minimum closest to the A-axis, meaning that the standing waves will respond
harmonically to the vibration.

(α = 1/2) or harmonic (α = 0). This then yields

(s+ i(α+ n))ζn = 1
6
k2A(ζn+1 + ζn−1)− 1

3
k2(B+ CMk2)ζn − 1

2
k2MΓn + Ãk2ζn, (3.7)

(s+ i(α+ n))Γn = 1
4
k2A(ζn+1 + ζn−1)− 1

2
k2(B+ CMk2)ζn

−k2(M+ Pe−1)Γn + 3
2
Ãk2ζn. (3.8)

It is possible to eliminate Γn from (3.7) and (3.8) in order to arrive at the following
recursion relation:

Anζn =A(ζn+1 + ζn−1), (3.9)

wherein

An =
2(s+ i(α+ n) + 1

3
k2Dn − 1

4
k4MDn/Cn)

1
3
k2 − 1

4
k4M/Cn

, (3.10)

in which

Cn = s+ i(α+ n) + (M+ Pe−1)k2,

Dn = B− 3Ã+ CMk2.

The recursion relation (3.9) can be truncated at a finite value of n, say n = N, and
converted into a matrix eigenvalue problem (Kumar & Tuckerman 1994). Solution of
the eigenvalue problem for s = 0 produces a set of tongue-like neutral stability curves
in the (k,A)-plane. The critical vibration amplitude needed to excite standing waves
can be determined from the tongue tip closest to the k-axis, and this will also yield
the critical wavenumber.

We have performed stability calculations using the recursion relation developed
above, and figure 1 shows the results for two different values of M. The other
parameters have been fixed at typical values (see caption), and we take N = 20. For
both M = 10 and M = 100, the tongue having the lowest amplitude corresponds to
a harmonic response. The critical amplitude is larger for M = 100, while the critical
wavenumber is smaller. The increase in the critical amplitude can be explained by
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recognizing that when the free surface is perturbed, the surfactant concentration
will be larger at the wave crests. This will produce a lower surface tension there
than in the wave troughs, and liquid will flow from the crests to the troughs. As
a result, it becomes more difficult to excite the instability. We have also performed
additional calculations to study the effects of the other parameters on the instability
behaviour. In these calculations, we fixed M = 10 and varied one parameter at
a time, holding the remaining ones at the values listed above. When B = 0.16,
the critical amplitude is larger than when B = 0. Similarly, when C = 0.1, the
critical amplitude is larger than when C = 0.0075. Since both gravity and surface
tension tend to restore the system to an equilibrium state, increases in their mean
values make it more difficult to excite the instability. When Pe is decreased to unity,
the critical amplitude increases compared to when Pe = 6.3 × 105. This can be
rationalized by recognizing that a lower value of Pe corresponds to faster surfactant
diffusion, and that the instability cannot be excited when the surfactant concentration
is uniform. In all of the above cases, the critical wavenumber decreases whenever
the critical amplitude increases. Finally, increasing Ã from 0 to 0.05 decreases the
critical amplitude and the critical wavenumber. As non-zero values of Ã correspond
to attractive van der Waals forces between the liquid and the plate, a smaller critical
amplitude is required since the van der Waals forces will promote the growth of the
surface waves.

4. Discussion and conclusions
In this work, we have addressed the issue of how gravity modulation affects

disturbances at a contaminated free surface for a class of flows where lubrication
theory applies and the contaminants can be modelled as insoluble surfactants. Our
analysis led to nonlinear partial differential equations describing the behaviour of
the free surface height and the surfactant concentration, and the stability of these
equations to small perturbations was investigated. It was found that long-wavelength
disturbances are destabilized when surfactants are present, in contrast to the case
where surfactants are absent. Our results also indicate that the instability becomes
more difficult to excite as the Marangoni forces, body forces, capillary forces and
surfactant diffusivity become larger, but becomes easier to excite as the van der Waals
forces increase.

The major contribution of this work is the presentation of a systematic lubrication
analysis for vibration-driven standing waves. To our knowledge, such an analysis has
not been reported in previous work, which also has not treated the effect of van
der Waals forces. Our results also complement those of Kumar & Matar (2002),
as they represent standing wave solutions valid for non-zero surfactant diffusivities
that involve Marangoni forces in a non-trivial way. In addition, the nonlinear partial
differential equations that we derive, (2.38)–(2.40), can be used to study the behaviour
of large-amplitude disturbances, and a comprehensive numerical study will be reported
in a separate work. The methods developed here may be useful in studying the
behaviour of surface waves when both temperature gradients and gravity modulation
are present. Then, Marangoni flows arise due to the temperature-dependence of
the surface tension, and modelling of those flows is of considerable interest for
microgravity applications (Birkh et al. 2001; Skarda 2001).

S. K. thanks the Shell Oil Company Foundation for support through its Faculty
Career Initiation Funds program.
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Appendix
Here, we illustrate the argument for neglecting the potential effect of Marangoni

stresses on capillarity. Following the substitution of the scalings chosen in § 2.2 into
the normal stress balance, the capillary term may be written as follows:

(σm + σ̃S)

ηsLω
ε2ζ̃xx = ε2M

(
σ̃ +

σm

S
)
ζ̃xx, (A 1)

where, for simplicity, we have only considered the streamwise direction. For dilute
concentrations of surfactant such that S/σm ∼ O(ε2) we can write the normal stress
balance as

p = −ε2σm

SMζ̃xx + O(ε2) = −CMζ̃xx + O(ε2). (A 2)
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